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I Mathematics

1. Taylor series (truncate for approximations):

F (x) = F (x0) +
∑

F (n)(x0)(x − x0)
n/n!

Special case — linear approximation:

F (x) ≈ F (x0) + F ′(x0)(x − x0)

Some examples for |x| ≪ 1:

sin x ≈ x, cosx ≈ 1 − x2/2, ex ≈ 1 + x

ln(1 + x) ≈ x, (1 + x)n ≈ 1 + nx

2. Perturbation method: �nd the solution itera-

tively using the solution to the "non-perturbed" (di-

rectly solvable) problem as the 0th approximation;

corrections for the next approximation are calcu-

lated on the basis on the previous one.

3. Solution of the linear di�erential equation with

constant coe�icients ay′′ + by′ + cy = 0:

y = A exp(λ1x) + B exp(λ2x),

where λ1,2 is the solution of the characteristic

equation aλ2 + bλ+ c = 0 if λ1 6= λ2. If the solu-

tionof the characteristic equation is complex,while

a, b and c are real numbers, thenλ1,2 = γ±iω and

y = Ceγx sin(ωx + ϕ0).

4. Complex numbers

z = a + bi = |z|eiϕ, z̄ = a − ib = |z|e−iϕ

|z|2 = zz̄ = a2 + b2, ϕ = arg z = arcsin
b

|z|
Rez = (z + z̄)/2, Imz = (z − z̄)/2

|z1z2| = |z1||z2|, arg z1z2 = arg z1 + arg z2

eiϕ = cosϕ + i sinϕ

cosϕ = eiϕ+e−iϕ

2 , sinϕ = eiϕ−e−iϕ

2i

5. Cross and dot products of vectors are distribu-

tive: a(b + c) = ab + ac.

~a ·~b = ~b · ~a = axbx + ayby + . . . = ab cosϕ

|~a ×~b| = ab sinϕ; ~a ×~b = −~b × ~a ⊥ ~a,~b

~a×~b = (aybz−byaz)~ex+(azbx−bzax)~ey +. . .

~a × [~b × ~c] = ~b(~a · ~c) − ~c(~a ·~b).
Mixed prod. (volume of parallelep. def. by 3 vec.):

(~a,~b,~c) ≡ (~a · [~b×~c]) = ([~a×~b] ·~c) = (~b,~c,~a).

6.Cosine and sine laws:

c2 = a2 + b2 − 2ab cosϕ

a/ sinα = b/ sinβ = 2R

7.An angle inscribed in a circle is half of the central

angle that subtends the same arc on the circle.

Conclusions: hypotenuse of a right triangle

is the diameter of its circumcircle; if the angles

of a quadrilateral are supplementary, it is a cyclic

quadrilateral.

8. Taking derivatives:

(fg)′ = fg′ + f ′g, f [g(x)]′ = f ′[g(x)]g′

(sin x)′ = cosx, (cosx)′ = − sinx

(ex)′ = ex, (ln x)′ = 1/x, (xn)′ = nxn−1

(arctanx)′ = 1/(1 + x2)

(arcsinx)′ = −(arccosx)′ = 1/
√

1 − x2

9. Integration: the formulas are the same as for

derivatives, but with swapped le�-hand-side and

rhs. (inverse operation!), e.g.
∫

xndx = xn+1/(n + 1).

Special case of the substitution method:
∫

f(ax + b)dx = F (ax + b)/a.

10.Numerical methods. Newton’s iterative method

for �nding roots f(x) = 0:

xn+1 = xn − f(xn)/f ′(xn).

Trapezoidal rule for approximate integration:
∫ b

a

f(x)dx ≈ b − a

2n
[f(x0) + 2f(x1) + . . .

+2f(xn−1) + f(xn)]

11. Derivatives and integrals of vectors: di�erenti-

ate/integrate each component; alternatively di�er-

entiate by applying the triangle rule for the di�er-

ence of two in�nitesimally close vectors.

II General recommendations

1. Check all formulas for veracity: a) examine di-

mensions; b) test simple special cases (two param-

eters are equal, one param. tends to 0 or ∞); c)

verify the plausibility of solution’s qualitative be-

haviour.

2. If there is an extraordinary coincidence in the

problem text (e.g. two things are equal) then the

key to the solution might be there.

3. Read carefully the recommendations in the

problem’s text. Pay a�ention to the problem’s for-

mulation — sometimes insigni�cant details may

carry vital information. If you have solved for some

timeunsuccessfully, then read the text again—per-

haps you misunderstood the problem.

4. Postpone long and time-consuming mathemat-

ical calculations to the very end (when everything

else is done)whilewriting down all the initial equa-

tions which need to be simpli�ed.

5. If the problem seems to be hopelessly di�icult,

it has usually an extremely simple solution (and a

simple answer). 	is is valid only for Olympiad

problems, which are de�nitely solvable.

6. In experiments a) sketch the experimental

scheme even if you don’t have time for measure-

ments; b) think, how to increase the precision of

the results; c) write down (as a table) all your di-

rect measurements.

III Kinematics

1.For a point or for a translationalmotionof a rigid

body (integral→ area under a graph):

~v =
d~x

dt
, ~x =

∫

~vdt (x =

∫

vxdt etc.)

~a =
d~v

dt
=

d2~x

dt2
, ~v =

∫

~adt

t =

∫

v−1
x dx =

∫

a−1
x dvx, x =

∫

vx

ax
dvx

Ifa = Const., then previous integrals can be found

easily, e.g.

x = v0t + at2/2 = (v2 − v2
0)/2a.

2. Rotational motion — analogous to the transla-

tional one: ω = dϕ/dt, ε = dω/dt;

~a = ~τdv/dt + ~nv2/R

3. Curvilinear motion— same as point 1, but vec-

tors are to be replaced by linear velocities, accelera-

tions and path lengths.

4.Motion of a rigid body. a) vA cosα = vB cosβ;

~vA,~vB —velocities of pts.A andB;α,β —angles

formed by ~vA, ~vB with line AB. b) 	e instanta-

neous center of rotation (6= center of curvature of

material pt. trajectories!) can be found as the inter-

section pt. of perpendiculars to ~vA and ~vB , or (if

~vA, ~vB ⊥ AB) as the intersection pt. of AB with

the line connecting endpoints of ~vA and ~vB .

5.Non-inertial reference frames:
~v2 = ~v0 + ~v1, ~a2 = ~a0 + ~a1 + ω2 ~R + ~aCor

Note: ~aCor ⊥ ~v1, ~ω;~aCor = 0 if ~v1 = 0.

6∗. Ballistic problem: reachable region
y ≤ v2

0/(2g) − gx2/2v2
0.

7. For �nding fastest paths, Fermat’s andHuygens’s

principles can be used.

8. To �nd a vector (velocity, acceleration), it is

enough to �nd its direction and a projection to a

single (possibly inclined) axes.

IV Dynamics

1. For a 2D equilibrium of a rigid body: 2 eqns.

for force, 1 eq. for torque. 1 (2) eq. for force can

be substituted with 1 (2) for torque. Torque is of-

ten be�er— “boring” forces can be eliminated by a

proper choice of origin. If forces are applied only to

2 points, the (net) force application lines coincide;

for 3 points, the 3 lines meet at a single point.

2.Newton’s 2nd law for transl. and rot. motion:
~F = m~a, ~M = I~ε ( ~M = ~r × ~F ).

For 2D geometry ~M and ~ε are essentially scalars

andM = Fl = Ftr, where l is the arm of a force.

3.Generalized coordinates. Let the system’s state be

de�ned by a single parameter ξ and its time deriva-

tive ξ̇ so that the pot. energyΠ = Π(ξ) and kin. en.

K = µξ̇2/2; then µξ̈ = −dΠ(ξ)/dξ. (Hence for

transl. motion: force is the derivative of pot. en.)

4. If the system consists of mass pointsmi:
~rc =

∑

mi~ri/
∑

mj , ~P =
∑

mi~vi

~L =
∑

mi~ri × ~vi, K =
∑

miv
2
i /2

Iz =
∑

mi(x
2
i + y2

i ) =

∫

(x2 + y2)dm.



5. In a frame where the mass center’s velocity is ~vc

(index c denotes quantities rel. to themass center):

~L = ~Lc + MΣ
~Rc × ~vc, K = Kc + MΣv2

c/2

~P = ~Pc + MΣ~vc

6. Steiner’s theorem is analogous (b —distance of

the mass center from rot. axis): I = Ic + mb2.

7.With ~P and ~L from pt. 5, Newton’s 2nd law:

~FΣ = d~P/dt, ~MΣ = d~L/dt

8∗. Additionally to pt. 5, themom. of inertia rel. to

the z-axis through the mass center can be found as

Iz0 =
∑

i,j mimj [(xi−xj)
2+(yi−yj)

2]/2MΣ.

9.Mom. of inertia rel. to the origin θ =
∑

mi~r
2
i

is useful for calculating Iz of 2D bodies or bodies

with central symmetry using 2θ = Ix + Iy + Iz .

10. Physical pendulum with a reduced length l̃:

ω2(l) = g/(l + I/ml),

ω(l) = ω(l̃ − l) =

√

g/l̃, l̃ = l + I/ml

11. Coe�icients for the momenta of inertia: cylin-

der 1
2 , solid sphere

2
5 , thin spherical shell

2
3 , rod

1
12

(rel. to endpoint 1
3), square

1
6 .

12.O�en applicable conservation laws:

energy (elastic bodies, no friction),

momentum (no net external force; can hold only

along one axis),

angular momentum (no net ext. torque, e.g. the

arms of ext. forces are 0 (can be wri�en rel. to 2 or

3 pts., then substitutes conservation of lin. mom.).

13. Additional forces in non-inertial frames of ref.:

inertial force −m~a, centrifugal force mω2 ~R and

Coriolis force∗ 2m~v × ~Ω (be�er to avoid it; being

⊥ to the velocity, it does not create any work).

14.Tilted coordinates: for amotion on an inclined

plane, it is o�en practical to align axes along and⊥
to the plane; gravit. acceleration has then both x-

and y- components. Axes may also be oblique (not

⊥ to each other), but then with ~v = vx~ex + vy~ey,

vx 6= to the x-projection of ~v.

15.Collision of 2 bodies: conserved are a) netmo-

mentum, b) net angular mom., c) angular mom. of

one of the bodies with respect to the impact point, d)

total energy (for elastic collisions); in case of fric-

tion, kin. en. is conserved only along the axis⊥ to

the friction force. Also: e) if the sliding stopsduring

the impact, the �nal velocities of the contact points

will have equal projections to the contact plane;

d) if sliding doesn’t stop, the momentum delivered

from one body to the other forms angle arctanµ

with the normal of the contact plane.

16. Every motion of a rigid body can be repre-

sented as a rotation around the instantaneous cen-

ter of rotationC (in terms of velocities of the body

points). NB!Distance of a body pointP fromC 6=
to the radius of curvature of the trajectory ofP .

17. Tension in a string: for a massive hanging

string, tension’s horizontal component is constant

and vertical changes according to the string’s mass

underneath. Pressure force (per unit length) of a

string resting on a smooth surface is determined by

its radius of curvature and tension: N = T/R.

Analogy: surface tension pressure p = 2σ/R; to

derive, study the pressure force along the diameter.

18∗. Adiabatic invariant: if the relative change of

the parameters of an oscillating system is small dur-

ing one period, the area of the loop drawn on the

phase plane (ie. in p-x coordinates) is conserved

with a very high accuracy.

19. For studying stability use a) principle of mini-

mum potential energy or b) principle of small vir-

tual displacement.

20∗. Virial theorem for �nite movement:

a) If F ∝ |~r|, then 〈K〉 = 〈Π〉 (time averages);

b) If F ∝ |~r|−2, then 2 〈K〉 = −〈Π〉.
21. Tsiolkovsky rocket equation ∆v = u ln M

m .

V Oscillations and waves

1.Damped oscillator:

ẍ + 2γẋ + ω2
0 = 0 (γ < ω0).

Solution of this equation is (cf. I.2.):

x = x0e
−γt sin(t

√

ω2
0 − γ2 − ϕ0).

2. Eq. of motion for a system of coupled oscilla-

tors: ẍi =
∑

j aijxj .

3. A system of N coupled oscillators has N dif-

ferent eigenmodes when all the oscillators oscillate

with the same frequency ωi, xj = xj0 sin(ωit +

ϕij), and N eigenfrequencies ωi (which can be

multiple, ωi = ωj). General solution (with 2N

integration constantsXi andφi) is a superposition

of all the eigenmotions :

xj =
∑

i

Xixj0 sin(ωit + ϕij + φi)

4. If a system described with a generalized coordi-

nate ξ (cf IV-2) and K = µξ̇2/2 has an equilib-

rium state at ξ = 0, for small oscillations Π(ξ) ≈
κξ2/2 [where κ = Π′′(0)] so that ω2 = κ/µ.

5.	ephase of a wave at pt. x, t isϕ = kx−ωt+

ϕ0, where k = 2π/λ is a wave vector. 	e value

at x, t is a0 cosϕ = ℜa0e
iϕ. 	e phase velocity is

vf = νλ = ω/k and group velocity vg = dω/dk.

6. For linear waves (electromagn. w., small-amplit.

sound- and water w.) any pulse can be considered

as a superpos. of sinusoidal waves; a standing w. is

the sum of two identical counter-propagating w.:

ei(kx−ωt) + e−i(kx−ωt) = 2e−ωt cos kx.

7. Speed of sound in a gas

cs =
√

(∂p/∂ρ)adiab =
√

γp/ρ = v̄
√

γ/3.

8. Speed of sound in elastic material cs =
√

E/ρ.

9. Sp. of shallow (h ≪ λ) water waves: v =
√

gh.

10.Doppler’s e�ect: ν = ν0
1+v‖/cs

1−u‖/cs
.

11. Huygens’ principle: wavefront can be con-

structed step by step, placing an imaginary wave

source in every point of previous wave front. Re-

sults are curves separated by distance∆x = cs∆t,

where∆t is time step and cs is the velocity in given

point. Waves travel perpendicular to wavefront.

VI Geometrical optics. Photometry.

1. Fermat’s principle: waves path from point A to

pointB is such that the wave travels the least time.

2. Snell’s law:

sin α1/ sinα2 = n2/n1 = v1/v2.

3. If refraction index changes continuously, then

we imaginarily divide the media into layers of con-

stant n and apply Snell’s law. Light ray can travel

along a layer of constantn, if the requirement of to-

tal internal re�ection is marginally satis�ed, n′ =

n/r (where r is the curvature radius).

4. If refraction index depends only on z, the pho-

ton’s mom. px , py , and en. are conserved:

kx, ky = Const., |~k|/n = Const.

5.	e thin lens equation (pay a�ention to signs):

1/a + 1/b = 1/f ≡ D.

6. Newton’s eq. (x1 , x1 — distances of the image

and the object from the focal planes): x1x2 = f2.

7. Parallax method for �nding the position of an

image: �nd such a pos. for a pencil’s tip that it

wouldn’t shi� with resp. to the image whenmoving

perpendicularly the position of your eye.

8.Geometrical constructions for �nding the paths

of light rays through lenses:

a) ray passing the lens center does not refract;

b) ray ‖ to the optical axis passes through the focus;
c) a�er refr., initially ‖ rays meet at the focal plane;

d) imageof a plane is a plane; these twoplanesmeet

at the plane of the lens.

9. Luminous �ux Φ [unit: lumen (lm)] measures

the energy of light (emi�ed, passing a contour, etc),

weighted according to the sensitivity of an eye. Lu-

minous intensity [candela (cd)] is the luminous

�ux (emi�ed by a source) per solid angle: I =

Φ/Ω. Illuminance [lux (lx)] is the luminous �ux

(falling onto a surface) per unit area: E = Φ/S.

10. Gauss theorem for luminous �ux: the �ux

through a closed surface surrounding the point

sources of intensity Ii is Φ = 4π
∑

Ii; single-

source-case: at a distance r,E = I/r2.

11. An experimental hint: if a grease stain on a pa-

per is as bright as the surrounding paper, then the

paper is equally illuminated from both sides.



VII Wave optics

1.Di�raction —method based on Huygens’ prin-

ciple: if obstacles cut the wavefront into frag-

ment(s), the wavefront can be divided into small

pieces which serve as imaginary point-like light

sources; the wave amplitude at the observ. site will

be the sum over the contributions of these sources.

2. Two slit interference (the slit width d ≪ a, λ):

angles of maxima ϕmax = arcsin(nλ/a), n ∈
Z; I ∝ cos2(k a

2 sin ϕ), where k = 2π/λ.

3. Single slit: angles of minima ϕmin =

arcsin(nλ/d), n ∈ Z, n 6= 0. NB! the central

maximum is double-wide. I ∝ sin2(k d
2 sin ϕ)/ϕ.

4. Di�raction grating: the main maxima are the

same as in pt. 2, the width of the main maxima —

the same as for pt. 3 with d being the net grating

length. Spectral resolving power λ
∆λ = nN , where

n is the order number of the main max. and N —

the number of slits.

5. Resolving power of a spectral device: λ
∆λ = L

λ ,

where L is the optical path di�erence between the

shortest and longest beams.

6. Resolving power of a prism: λ
∆λ = adn

dλ .

7.Angular distancewhen twopts. are resolved in an

ideal telescope (lens): ϕ = 1.22λ/d. For that an-

gle, the center of one point falls onto the �rst di�r.

min. of the other point.

8. Bragg theory: a set of ‖ ion planes of a crystal

re�ects X-rays if 2a sinα = kλ; a —distance be-

tween neighb. planes, α—glancing angle.

9. Re�ection from optically denser dielectric me-

dia: phase shi� π. Semi-transparent thin �lmS also

introduce phase shi�s.

10. Fabry-Pérot interferometer: two ‖ semitransp.

mirrors with large re�ectivity r (1 − r ≪ 1). Re-

solving power ν
∆ν ≈ 2a

λ(1−r) . Transmission spec-

trum can be found by introducing 5 plane waves

(for le�- and rightwards-propagating waves before

the device, in the dev. and a�er the dev.) and tailor-

ing these at the region boundaries.

11.Coherent electromagneticwaves: electric �elds

are added; vector diagram can be used, angle be-

tween vectors is the phase shi�; NB! dispersion:

n = n(ω) =
√

ε(ω). Energy �ux density (en.

per unit area and time): I = cε0nE2.

12. Malus’ law: for linearly polarized light I =

I0 cos2 ϕ, where ϕ is the angle between the polar-

ization planes.

13. Brewster’s angle: re�ected and refracted rays

are ⊥; re�ected ray is completely polarized; inci-

dence angle tan ϕB = n.

14. Di�r. with optical elements: no need to cal-

culate optical path lengths through lenses, prisms

etc.: work simply with images. Particular conclu-

sion: biprism gives the same di�r. as a double slit.

15∗. Optical �bres: Mach-Zehnder interferome-

ter is analogous to a double-slit di�raction; circular

resonator — to Fabry-Pérot interferometer; Bragg

�lterswork similarly to theX-ray case. Single-mode

�bres: ∆n/n ≈ λ/d.

VIII Circuits

1. U = IR,P = UI

Rseries =
∑

Ri, R−1
‖ =

∑

R−1
i

2. Kircho�’s laws:
∑

node

I = 0,
∑

contour

U = 0

3.To reduce thenumber of eqns. for pt 2:method of

node potentials; method of loop currents; equivalent

circuits (any 3-terminals⇒ triangle or star; any 2-

terminal with emf⇒ r and E in series).

4. Resistivity of in�nite chain: use self-similarity;

resistance between neighbour nodes of in�nite

grid: generalized method of electrical images.

5. AC: apply pts. 1–4 while substituting RwithZ:

ZR = R, ZC = 1/iωC, ZL = iωL;

ϕ = argZ, Ue� = |Z|Ie�
P = |U ||I| cos(arg Z) =

∑

I2
i Ri.

6.Characteristic times: τRC = RC , τLR = L/R,

ωLC = 1/
√

LC . Relaxation to stationary current

distribution exponential,∝ e−t/τ .

7. Energy conservation for electric circuits:

∆W + Q = Uq, where q is charge which has

crossed a potential dropU ; work of emf isA = Eq.

8.WC = CU2/2,WL = LI2/2.

9. E = −dΦ/dt = −d(LI)/dt,Φ = BS.

10.Nonlinear elements: graphical method— �nd

the solution in U -I coordinates as an intersection

point of a nonlinear curve and a line representing

Ohm/Kircho� laws. In case of many intersection

points study stability— some solutions are usually

unstable.

11. Make use of short- and long-time limits. For

tobservation ≫ τRC or τLR, quasiequilibrium is

reached: IC ≈ 0 (wire is “broken” near C) and

EL ≈ 0 (L is e�ectively short-circuited). For

tobservation ≪ τRC or τLR, the charge leakage of

C and current drop in L are small, ∆Q ≪ Q and

∆I ≪ I: C is “short-circuited” andL is “broken”.

12. IfL 6= 0, then I(t) is a continuous function.

13.	rough a superconducting contour, magnetic

�ux Φ = Const. In particular, with no external B,

LI = Const.

14. Mutual inductance: magnetic �ux through a

contour Φ1 = L1I1 + L12I2 (I2 — current in

a second contour). 	eorems: L12 = L21 ≡ M ;

M ≤
√

L1L2.

IX Electromagnetism

1.F = kq1q2/r2, Π = kq1q2/r—Kepler’s laws

are applicable (Ch. XII).

2.Gauss’s law:
∮

~Bd~S = 0,
∮

εε0
~Ed~S = Q,

∮

~gd~S = −4πGM.

3. Circulation theorem
∮

~Ed~l = 0 (= Φ̇),

∮ ~Bdl

µµ0
= I,

∮

~gd~l = 0.

4.Magnetic �eld caused by current element:

d ~B =
µµ0I

4π

d~l × ~er

r2
;

hence, at the center of circular I: B = µ0I
2r

5. ~F = e(~v × ~B + ~E), ~F = ~I × ~Bl.

6. From the Gauss’s and circulation laws:

charged wire: E = σ
2πε0r , DC:B = Iµ0

2πr ;

charged surface E = σ
2ε0

, current sheetB = µ0j
2 ;

inside a sphere (or in�nite cylindrical surface) of

homogeneous surface chargeE = 0, inside a cylin-

drical surface current ‖ to the axesB = 0,

inside a ball (d = 3), cylinder (d = 2) or layer

(d = 1) of homogeneous ρ or~j:

~E =
ρ

dε0
~r; ~B =

1

dε0

~j × ~r.

7. Long solenoid: inside B = Inµµ0, outside 0,

elsewhereB‖ = Inµµ0Ω
4π ; �ux Φ = NBS and in-

ductance L = Φ/I = V n2µµ0 (where n = N
l ).

8. Measuring magnetic �eld with a small coil and

ballistic galvanometer: q =
∫

E
Rdt = NS∆B/R.

9. Potential energy of a system of charges:

Π = k
∑

i>j

qiqj

rij
=

1

2

∫

ϕ(~r)dq, dq = ρ(~r)dV.

10. Force between parts of a uniformly charged

sphere or cylindrical surface: substitute force due

to charges with force due to hydrostatic pressure.

11. If all the charges are at the distance R (eg. at

the center of an inhomogeneously charged sphere

or ring), ϕ = kQ/r.

12. To �nd the net charge (or potential) induced

by external charges, use the superpos. pr.: “smear”

the charges to make the problem symmetric.

13. Conductor shields charges and electric �elds,

eg. charge distribution inside a hollow sphere can-

not be seen from outside (it seems as if there is a

conducting ball carrying a total chargeQ)

14. Capacitances: C = εε0S/d (plane),

4πεε0r(sphere), 2πεε0l(lnR/r)−1 (coaxial).

15.Dipole moment:
~de =

∑

qi~ri = ~lq, ~dµ = I ~S.



16. Energy and torque of a dipole:
W = ~d · ~E ( ~B), ~M = ~d × ~E ( ~B).

17.Dipole �eld: ϕ = k~d · ~er/r2;E, B ∝ r−3.

18. Forces acting on a dipole: F = ( ~E~de)
′, F =

( ~B~dµ)′; interaction between 2 dipoles: F ∝ r−4.

19. Electric and magnetic images: grounded (su-

perconducting for magnets) planes act as mirrors.

Field of a grounded (or isolated) sphere can be

found as a �eld of one (or two) �ctive charge(s) in-

side the sphere. 	e�eld in a planar waveguide (slit

betweenmetallic plates) canbeobtained as a super-

position of electromagnetic plane waves.

20. Ball’s (cylinder’s) polarization in homoge-

neous (electric) �eld: superpos. of homogeneously

charged (+ρ and−ρ) balls (cylinders), d ∝ E.

21. Eddy currents: power dissipation density ∼
B2v2/ρ; momentum given during a single pass:

Fτ ∼ B2a3d/ρ (whered—thickness; a—size).

22. Inside a superconductor and for fast processes

inside a conductorB = 0 and thus I = 0 (current

�ows in surface layer— skin e�ect).

23. Charge in homog. magnetic �eld ~B = B~ez

moves along a cycloid with dri� speed v =

E/B = F/eB; generalized mom. is conserved
p′x = mvx − Byq, p′y = mvy + Bxq,

as well as gen. angular mom.L′ = L + 1
2Bqr2 .

24.MHD generator (a — length along the direc-

tion of ~E):
E = vBa, r = ρa/bc.

25. Hysteresis: S-shaped curve (loop) in B-H-

coordinates (for a coil with core also B-I-coord.):

the loop area gives the thermal energy dissipation

density per one cycle).

26. Fields in ma�er: ~D = εε0
~E = ε0

~E + ~P ,

where ~P is dielectric polarization vector (volume

density of dipole moment); ~H = ~B/µµ0 =
~B/µ0 − ~J , where ~J is magnetization vector (vol-

ume density of magnetic moment).

27. In an interface between two substancesEt ,Dn

(= εEt),Ht (= Bt/µ) andBn are continuous.

28. Energy density: W = 1
2 (εε0E

2 + B2/µµ0).

29. For µ ≫ 1, �eldlines of B are a�racted to the

ferromagnetic (acts as a potential hole, cf. pt. 28).

30. Current density~j = ne~v = σ ~E = ~E/ρ.

X 	ermodynamics

1. pV = m
µ RT

2. Internal energy of one moleU = i
2RT .

3. Volume of one mole at standard cond. is 22,4 l.

4. Adiabatic processes: slow as compared to sound

speed, no heat exchange: pV γ = Const. (and

TV γ−1 = Const.).

5. γ = cp/cv = (i + 2)/i.

6. Boltzmann’s distribution:
ρ = ρ0e

−µgh/RT = ρ0e
−U/kT .

7. Maxwell’s distribution (how many molecules

have speed v)∝ e−mv2/2kT .

8. Atm. pressure: if ∆p ≪ p, then∆p = ρg∆h.

9. p = 1
3mnv̄2, v̄ =

√

3kT/m, ν = vnS.

10. Carnot’s cycle: 2 adiabats, 2 isotherms. η =

(T1 − T2)/T1; derive using S-T -coordinates.

11.Heat pump, inverse Carnot: η = T1

T1−T2

.

12. Entropy: dS = dQ/T .

13. I law of thermodynamics: δU = δQ + δA

14. II law of thermodynamics: ∆S ≥ 0 (and

ηreal ≤ ηCarnot).

15.Gas work (look also p. 10)

A =

∫

pdV, adiabatic: A =
i

2
∆(pV )

16.Dalton’s law: p =
∑

pi.

17. Boiling: pressure of saturated vapour pv = p0;

at the interface betw. 2 liquids: pv1 + pv2 = p0.

18. Heat �ux P = kS∆T/l (k — thermal con-

ductivity); analogy to DC circuits (P corresponds

to I ,∆T toU , k to 1/R).

19.Heat capacity: Q =
∫

c(T )dT . Solids: for low

temperatures, c ∝ T 3; for high T , c = 3NkT ,

whereN —number of ions in crystal la�ice.

20. Surface tension:
U = Sσ, F = lσ, p = 2σ/R.

XI Quantum mechanics

1. ~p = h̄~k (|~p| = h/λ),E = h̄ω = hν.

2. Interference: as in wave optics.

3.Uncertainty (as a math. theorem):

∆p∆x ≥ h̄

2
, ∆E∆t ≥ h̄

2
, ∆ω∆t ≥ 1

2
.

For qualitative estimates by non-smooth shapes, h

serves be�er (∆p∆x ≈ h etc).

4. Spectra: hν = En−Em; width of spectral lines

is related to lifetime: Γτ ≈ h̄.

5. Oscillator’s (eg. molecule) en. levels (with

eigenfrequency ν0): En = (n+ 1
2 )hν0. For many

eigenfrequencies: E =
∑

i hniνi.

6.Tunnelling e�ect: barrierΓwith width l is easily

penetrable, if Γτ ≈ h̄, where τ = l/
√

Γ/m.

7. Bohr’s model: En ∝ −1/n2. In a (classically

calculated) circular orbit, there is an integer num-

ber of wavelengths λ = h/mv.

8.Compton e�ect— if photon is sca�ered from an

electron, photon’s∆λ = λC(1 − cos θ).

9. Photoe�ect: A + mv2/2 = hν (A - work of

exit for electrons). I-U -graph: photocurrent starts

at the counter-voltage U = −(hν − A)/e, satu-

rates for large forward voltages.

10. Stefan-Boltzmann: P = σT 4.

XII Kepler laws

1. F = GMm/r2, Π = −GMm/r.

2.Gravitational interaction of 2 point masses (Ke-

pler’s I law): trajectory of each of them is an ellipse,

parabola or hyperbola, with a focus at the center of

mass of the system. Derive from R.-L. v. (pt 9).

3. Kepler’s II law (conserv. of angular mom.): for

a point mass in a central force �eld, radius vector

covers equal areas in equal times.

4. Kepler’s III law: for two point masses at elliptic

orbits in r−2-force �eld, revolution periods relate

as the longer semiaxes to the power of 3
2 :

T 2
1 /T 2

2 = a3
1/a3

2.

5. Full energy (K +Π) of a body in a gravity �eld:
E = −GMm/2a.

6. For small ellipticities ε = d/a ≪ 1, trajectories

can be considered as having a circular shapes, with

shi�ed foci.

7. Properties of an ellipse: l1 + l2 = 2a (l1, l2
—distances to the foci), α1 = α2 (light from one

focus is re�ected to the other), S = πab.

8. A circle and an ellipse with a focus at the circle’s

center can touch each other only at the longer axis.

9∗. Runge-Lenz vector (the ellipticity vector):

~ε =
~L × ~v

GMm
+ ~er = Const.

XIII 	eory of relativity

1. Lorentz transforms (rotation of 4D space-time

ofMinkowski geometry), γ = 1/
√

1 − v2/c2:
x′ = γ(x − vt), y′ = y, t′ = γ(t − vx/c2)

p′x = γ(px − mv), m′ = γ(m − pxv/c2)

2. Length of 4-vector:
s2 = c2t2 − x2 − y2 − z2

m2
0c

2 = m2c2 − p2
x − p2

y − p2
z

3. Adding velocities:
w = (u + v)/(1 + uv/c2).

4.Doppler e�ect:
ν′ = ν0

√

(1 − v/c)/(1 + v/c).

5.Minkowski space can be made Euclidean if time

is imaginary (t → ict). 	en, for rot. angle ϕ,

tanϕ = v/ic. Express sin ϕ, and cosϕ via tanϕ,

and apply the Euclidean geometry formulae.

6. Shortening of length: l′ = l0/γ.

7. Lengthening of time: t′ = t0γ.

8. Simultaneity is relative, ∆t = −γv∆x/c2.

9. ~F = d~p/dt [= d
dt (m~v), wherem = m0γ].

10. Ultrarelativistic approximation: v ≈ c, p ≈
mc,

√

1 − v2/c2 ≈
√

2(1 − v/c).

11∗. Lorentz tr. forE-B: ~B′
|| = ~B||, ~E′

|| = ~E||,

~E′
⊥ = γ( ~E⊥+~v× ~B⊥), ~B′

⊥ = γ( ~B⊥−~v×
~E⊥

c2
).

∗ marks an advanced material.

Corrections/suggestions⇒ kalda@ioc.ee.

Composed by J. Kalda, translated by U. Visk and J.K.


